Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(11): eadj2802, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489359

RESUMO

Development of T cells is controlled by the signal strength of the TCR. The scaffold protein kinase D-interacting substrate of 220 kilodalton (Kidins220) binds to the TCR; however, its role in T cell development was unknown. Here, we show that T cell-specific Kidins220 knockout (T-KO) mice have strongly reduced invariant natural killer T (iNKT) cell numbers and modest decreases in conventional T cells. Enhanced apoptosis due to increased TCR signaling in T-KO iNKT thymocytes of developmental stages 2 and 3 shows that Kidins220 down-regulates TCR signaling at these stages. scRNA-seq indicated that the transcription factor Aiolos is down-regulated in Kidins220-deficient iNKT cells. Analysis of an Aiolos KO demonstrated that Aiolos is a downstream effector of Kidins220 during iNKT cell development. In the periphery, T-KO iNKT cells show reduced TCR signaling upon stimulation with α-galactosylceramide, suggesting that Kidins220 promotes TCR signaling in peripheral iNKT cells. Thus, Kidins220 reduces or promotes signaling dependent on the iNKT cell developmental stage.


Assuntos
Fator de Transcrição Ikaros , Proteínas de Membrana , Células T Matadoras Naturais , Timo , Animais , Camundongos , Diferenciação Celular , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas de Membrana/metabolismo , Fator de Transcrição Ikaros/metabolismo , Timo/citologia , Timo/metabolismo
2.
Front Immunol ; 14: 1058267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756120

RESUMO

The T-box transcription factors T-bet and Eomesodermin regulate type 1 immune responses in innate and adaptive lymphocytes. T-bet is widely expressed in the immune system but was initially identified as the lineage-specifying transcription factor of Th1 CD4+ T cells, where it governs expression of the signature cytokine IFN- γ and represses alternative cell fates like Th2 and Th17. T-bet's paralog Eomes is less abundantly expressed and Eomes+ CD4+ T cells are mostly found in the context of persistent antigen exposure, like bone marrow transplantation, chronic infection or inflammation as well as malignant disorders. However, it has remained unresolved whether Eomes executes similar transcriptional activities as T-bet in CD4+ T cells. Here we use a novel genetic approach to show that Eomes expression in CD4+ T cells drives a distinct transcriptional program that shows only partial overlap with T-bet. We found that Eomes is sufficient to induce the expression of the immunoregulatory cytokine IL-10 and, together with T-bet, promotes a cytotoxic effector profile, including Prf1, Gzmb, Gzmk, Nkg7 and Ccl5, while repressing alternative cell fates. Our results demonstrate that Eomes+ CD4+ T cells, which are often found in the context of chronic antigen stimulation, are likely to be a unique CD4+ T cell subset that limits inflammation and immunopathology as well as eliminates antigen-presenting and malignant cells.


Assuntos
Antineoplásicos , Interleucina-10 , Camundongos , Animais , Interleucina-10/genética , Interferon gama/metabolismo , Subpopulações de Linfócitos T , Citocinas , Células Th17 , Inflamação , Proteínas com Domínio T/genética , Proteínas de Membrana
3.
PLoS Pathog ; 16(9): e1008870, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32991634

RESUMO

The two T-box transcription factors T-bet and Eomesodermin (Eomes) are important regulators of cytotoxic lymphocytes (CTLs), such as activated CD8 T cells, which are essential in the fight against intracellular pathogens and tumors. Both transcription factors share a great degree of homology based on sequence analysis and as a result exert partial functional redundancy during viral infection. However, the actual degree of redundancy between T-bet and Eomes remains a matter of debate and is further confounded by their distinct spatiotemporal expression pattern in activated CD8 T cells. To directly investigate the functional overlap of these transcription factors, we generated a new mouse model in which Eomes expression is under the transcriptional control of the endogenous Tbx21 (encoding for T-bet) locus. Applying this model, we demonstrate that the induction of Eomes in lieu of T-bet cannot rescue T-bet deficiency in CD8 T cells during acute lymphocytic choriomeningitis virus (LCMV) infection. We found that the expression of Eomes instead of T-bet was not sufficient for early cell expansion or effector cell differentiation. Finally, we show that imposed expression of Eomes after acute viral infection promotes some features of exhaustion but must act in concert with other factors during chronic viral infection to establish all hallmarks of exhaustion. In summary, our results clearly underline the importance of T-bet in guiding canonical CTL development during acute viral infections.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/fisiologia , Proteínas com Domínio T/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica/fisiologia , Interferon gama/metabolismo , Camundongos Transgênicos
4.
Mucosal Immunol ; 13(2): 257-270, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31712600

RESUMO

Natural intraepithelial lymphocytes (IELs) are thymus-derived adaptive immune cells, which are important contributors to intestinal immune homeostasis. Similar to other innate-like T cells, they are induced in the thymus through high-avidity interaction that would otherwise lead to clonal deletion in conventional CD4 and CD8 T cells. By applying single-cell RNA-sequencing (scRNA-seq) on a heterogeneous population of thymic CD4-CD8αß-TCRαß+NK1.1- IEL precursors (NK1.1- IELPs), we define a developmental trajectory that can be tracked based on the sequential expression of CD122 and T-bet. Moreover, we identify the Id proteins Id2 and Id3 as a novel regulator of IELP development and show that all NK1.1- IELPs progress through a PD-1 stage that precedes the induction of T-bet. The transition from PD-1 to T-bet is regulated by the transcription factor C-Myc, which has far reaching effects on cell cycle, energy metabolism, and the translational machinery during IELP development. In summary, our results provide a high-resolution molecular framework for thymic IEL development of NK1.1- IELPs and deepen our understanding of this still elusive cell type.


Assuntos
Linfócitos Intraepiteliais/imunologia , Células Precursoras de Linfócitos T/imunologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas com Domínio T/metabolismo , Timo/imunologia , Animais , Antígenos Ly/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Imunidade Inata , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Proteínas com Domínio T/genética
5.
Mucosal Immunol ; 11(2): 333-344, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28745324

RESUMO

The intestine is a major immune organ with several specialized lymphoid structures and immune cells. Among these are thymus-derived natural intraepithelial lymphocytes (IELs) that lack expression of the classical co-receptors CD4 or CD8αß (double negative (DN)). Natural IELs are both αß+ and γδ+ T cells that play important roles in the maintenance of the epithelial barrier at steady state and during inflammation. The transcription factor T-bet is essential for the peripheral development of natural IELs, but its role during thymic development has remained less clear. Here we show that a T-bet gradient in DN TCRαß+NK1.1- thymocytes (IEL precursors (IELPs)) determines IEL fate in natural TCRαß+ IELs. Employing T-bet ZsGreen reporter mice in in vitro cultures and in vivo transfer experiments, we demonstrate that with increasing expression of T-bet, DN TCRαß+NK1.1- thymocytes are gradually restricted to a DN IEL fate. Furthermore, we show that the natural TCRαß+ IELs seed the intestine within the first month of life. This in turn is preceded by the appearance of T-bet- and T-bet+ IELPs that egress from the thymus in a sphingosine-1-phosphate (S1P)-dependent manner. In summary, the use of T-bet reporter mice has enabled us to identify and refine an immediate and clearly committed postselection precursor of natural TCRαß+ IELs.


Assuntos
Intestinos/imunologia , Linfócitos Intraepiteliais/fisiologia , Células Precursoras de Linfócitos T/fisiologia , Linfócitos T/fisiologia , Timo/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
6.
Genesis ; 55(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28646547

RESUMO

The T-box transcription factor Eomes (also known as Tbr2) shows short-lived expression in various localized domains of the embryo, including epiblast cells during gastrulation and intermediate progenitor cells in the cerebral cortex. In these tissues Eomes fulfills crucial roles for lineage specification of progenitors. To directly observe Eomes-dependent cell lineages in the living embryo, we generated a novel dual-fluorescence reporter allele that expresses a membrane-bound tdTomato protein for investigation of cell morphology and a nuclear GFP for cell tracing. This allele recapitulates endogenous EOMES protein expression and is suitable for live imaging. We found that the allele can also be used as a short-to-medium-term lineage tracer, as GFP persists in cells longer than EOMES protein and marks Eomes-dependent lineages with a timeframe of days to weeks depending on the proliferation rate. In summary, we present a novel genetic tool for investigation of Eomes-dependent cell types by live imaging and lineage tracing.


Assuntos
Linhagem da Célula , Rastreamento de Células/métodos , Genes Reporter , Engenharia Genética/métodos , Imagem Óptica/métodos , Proteínas com Domínio T/genética , Animais , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Proteínas com Domínio T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...